equação tensorial de sistema dinâmico estatístico quântico 1 / / / / [DR] = .= G + G* = = [ ] ω , , / T] / c [ [x,t] ] = |
/
Na física, uma partícula livre é uma partícula que, em certo sentido, não está vinculada por uma força externa, ou equivalentemente não está em uma região onde sua energia potencial varia. Na física clássica, isso significa que a partícula está presente em um espaço "sem campo". Na mecânica quântica, significa uma região de potencial uniforme, geralmente modulada para zero na região de interesse, uma vez que o potencial pode ser arbitrariamente arranjado para zero em qualquer ponto (ou superfície em três dimensões) no espaço.
Descrição matemática
Partícula livre clássica
A partícula livre clássica é caracterizada simplesmente por uma velocidade fixa v. O momento linear é dado por
equação tensorial de sistema dinâmico estatístico quântico 1 / / / / [DR] = .= G + G* = = [ ] ω , , / T] / c [ [x,t] ] = |
/
e a energia cinética, que é igual à energia total, é dada por
equação tensorial de sistema dinâmico estatístico quântico 1 / / / / [DR] = .= G + G* = = [ ] ω , , / T] / c [ [x,t] ] = |
/
onde m é a massa da partícula e v é o vetor velocidade da partícula.
Partícula livre quântica
Uma partícula livre na mecânica quântica (não relativística) é descrita pela equação de Schrödinger livre:
equação tensorial de sistema dinâmico estatístico quântico 1 / / / / [DR] = .= G + G* = = [ ] ω , , / T] / c [ [x,t] ] = |
/
onde ψ é a função de onda da partícula na posição r e tempo t. A solução para uma partícula com momento p ou vetor de onda k, na freqüência angular ω ou energia E, é dada pela onda plana complexa:
equação tensorial de sistema dinâmico estatístico quântico 1 / / / / [DR] = .= G + G* = = [ ] ω , , / T] / c [ [x,t] ] = |
/
com amplitude A. Como para todas as partículas quânticas livres ou ligadas, o princípio da incerteza de Heisenberg
(da mesma forma para as direções y e z) e as relações De Broglie:[1]:
equação tensorial de sistema dinâmico estatístico quântico 1 / / / / [DR] = .= G + G* = = [ ] ω , , / T] / c [ [x,t] ] = |
/
se aplicam. Como a energia potencial é adotada como zero, a energia total E é igual à energia cinética, que tem a mesma forma da física clássica:
equação tensorial de sistema dinâmico estatístico quântico 1 / / / / [DR] = .= G + G* = = [ ] ω , , / T] / c [ [x,t] ] = |
/
Há várias equações que descrevem partículas relativísticas: veja equações de onda relativísticas.[
A integral de caminho e a função de partição
A integral de caminho é apenas a generalização da integral a seguir para todos problemas da mecânica quântica -
- onde
equação tensorial de sistema dinâmico estatístico quântico 1 / / / / [DR] = .= G + G* = = [ ] ω , , / T] / c [ [x,t] ] = |
/
é a ação do problema clássico investigado cujo caminho inicia-se em t=0 e termina em t = T, sendo Dx a notação para integração de todos os caminhos. No limite clássico, , o caminho da mínima ação domina o integral, porque a fase de qualquer outro caminho oscila rapidamente e as diferentes contribuições se cancelam.[8]
Conexão com a mecânica estatística é a seguinte: Considerando apenas os caminhos que começam e terminam na mesma configuração, execute-se a rotação de Wick , isto é, fazendo o tempo imaginário, e integra-se sobre todos as possíveis configurações iniciais/finais. A integral de caminho torna-se semelhante a função de partição da mecânica estatística definida em um ensemble canônico com o inverso da temperatura proporcional ao tempo imaginário, . S Rigorosamente falando, esta é a função de partição para uma teoria de campos estatística .
Claramente, uma analogia profunda entre a mecânica quântica e mecânica estatística não pode depender desta formulação. Na formulação canônica, vê-se que a evolução do operador unitário de um estado é dada por
equação tensorial de sistema dinâmico estatístico quântico 1 / / / / [DR] = .= G + G* = = [ ] ω , , / T] / c [ [x,t] ] = |
/
onde o estado α evoluiu a partir do tempo t = 0. Se uma rotação de Wick é realizada, e encontra-se a amplitude de movimento a partir de qualquer estado, de volta para o mesmo estado (imaginária) do tempo que é dado por
equação tensorial de sistema dinâmico estatístico quântico 1 / / / / [DR] = .= G + G* = = [ ] ω , , / T] / c [ [x,t] ] = |
/
que é, precisamente, a função de partição para o mesmo sistema na temperatura citada anteriormente. Um aspecto desta equivalência também era conhecido por Schrödinger ,comentando que a equação a se parecia com a equação de difusão, depois de feito a rotação de Wick.
Medida de fatores teóricos
Por vezes (por exemplo, uma partícula movendo-se no espaço curvo) temos medidas de fatores teóricos na integral funcional.
equação tensorial de sistema dinâmico estatístico quântico 1 / / / / [DR] = .= G + G* = = [ ] ω , , / T] / c [ [x,t] ] = |
/
Este fator é necessária para restaurar o unitariedade.
Por exemplo, tomando:
- ,
equação tensorial de sistema dinâmico estatístico quântico 1 / / / / [DR] = .= G + G* = = [ ] ω , , / T] / c [ [x,t] ] = |
/
então isso significa que cada fatia espacial é multiplicado pela medida √g. Esta medida não pode ser expressa como um funcional da multiplicação da medida de porque eles pertencem a diferentes classes.
Teoria quântica de campos
A formulação da integral de caminho foi muito importante para o desenvolvimento da teoria do campo quântico. Tanto Schrödinger quanto Heisenberg usaram abordagens para a mecânica quântica independentes do tempo, fora do âmbito da relatividade. Por exemplo, a abordagem de Heisenberg requer que os operadores de campo escalar obedeçam a relação de comutação:
equação tensorial de sistema dinâmico estatístico quântico 1 / / / / [DR] = .= G + G* = = [ ] ω , , / T] / c [ [x,t] ] = |
/
para x e y duas posições espaciais simultâneas, não é um conceito de invariante relativístico. Os resultados de um cálculo são covariantes, mas a simetria não é evidente em estágios intermediários. Se os cálculos da teoria de campo cálculos não produzem respostas infinitas no limite contínuo, isso não teria sido um grande problema – poderia ser apenas uma má escolha de coordenadas. Mas a falta de simetria significa que as quantidades infinitas devem ser eliminadas, pois as coordenadas tornam quase impossível finalizar a teoria sem prejudicar a simetria. Isso torna difícil para extrair previsões físicas, exigindo um cuidadoso procedimento limite.
O problema de perda de simetria também aparece na mecânica clássica, onde a formulação Hamiltoniana também destaca o tempo superficialmente. A formulação Lagrangiana torna a invariância relativista aparente. A integral de caminho também é manifestamente relativista, e reproduz a equação de Schrödinger, as equações de movimento de Heisenberg, e as relações de comutação canônica mostrando que são compatíveis com a relatividade. estende o tipos de operadores algébricos de Heisenberg em regras do produto de operadores que são novas relações difíceis ver no formalismo antigo.
Além disso, diferentes escolhas de variáveis canônicas levam a formulações muito diferentes da mesma teoria. As transformações entre as variáveis podem ser muito complicadas, mas a integral de caminho faz destas transformações algo mais razoável, como uma mudança simples nas variáveis de integração. Por estas razões, a integral de caminho de Feynman tornou os formalismos anteriores em grande parte obsoleto.
O preço de da representação da integral de caminho é que o unitariedade da teoria não é auto-evidente, mas pode ser comprovado mudando as variáveis para uma representação canônica. A Integral de caminho em si também lida com espaços matemáticos maiores que o habitual, exigindo mais cuidado matemático dos quais não foi devidamente esclarecida. Historicamente a integral de caminho não foi imediatamente aceita, em parte porque ele levou muitos anos para incorporar férmions corretamente. Isto acabou por levar os físicos a inventar um novo objeto matemático – chamade de variável de Grassmann – que também permite a mudança de variáveis de forma natural, assim como a quantização restrita.
A integração de variáveis na integral de caminho sutilmente . O valor do produto de dois operadores de campo, no que parece ser o mesmo ponto depende de como os dois pontos são ordenados no tempo e no espaço, resultando em algumas identidades falhas (anomalia quântica).
O
Tunelamento quântico
O tunelamento quântico pode ser modelado pelo uso da formulação de integral de caminho para determinar a ação da trajetória através de uma barreira de potencial. Usando a aproximação WKB, o a taxa de tunelamento () pode ser determinado por:
equação tensorial de sistema dinâmico estatístico quântico 1 / / / / [DR] = .= G + G* = = [ ] ω , , / T] / c [ [x,t] ] = |
/
sendo a ação efetiva e um fator multiplicativo. Esta forma é especialmente útil em um sistema dissipativo, onde o sistema e o ambiente deve ser modelada juntos. Usando a equação de Langevin para o modelo de movimento Browniano, o caminho de formação integral que pode ser usado para determinar uma ação eficaz e pré-exponencial modelo para ver o efeito da dissipação no tunelamento .[11] A partir deste modelo, taxas de tunelamento de sistemas macroscópicos podem ser previstas em temperaturas finitas.
Em física, o fator de Boltzman é um fator de ponderação que determina a probabilidade relativa de um estado , num sistema com múltiplos estados em equilíbrio termodinâmico a temperatura .[1]
equação tensorial de sistema dinâmico estatístico quântico 1 / / / / [DR] = .= G + G* = = [ ] ω , , / T] / c [ [x,t] ] = |
/
Onde é a constante de Boltzmann, e é a energia do estado . A relação das probabilidades dos estados é dada pela relação (quociente) de seus fatores de Boltzmann.
O fator de Boltzmann não é em si mesmo uma probabilidade, já que não está normalizada. Para normalizar o fator de Boltzmann e converter-lo numa probabilidade, deve-se dividi-lo pela soma dos fatores de Boltzmann de todos os estados possíveis do sistema, o qual se denomina função de partição. Desta forma se obtem a distribuição de Boltzmann.
A partir do fator de Boltzmann é possível desenvolver a estatística de Maxwell-Boltzmann, a estatística de Bose-Einstein e a estatística de Fermi-Dirac que regem as partículas clássicas como também os bósons e férmions na mecânica quântica, respectivamente.
Comentários
Postar um comentário